Мерзляк Якір Геометрія 7 клас відповіді

Вправа 732

 

Умова:

Через точку А до кола i3 центром О проведено дотичнi AM i AK, M i К - точки дотику. Точка перетину відрізка ОА з колом є серединою цього відрізка. Знайдіть кут МАК.

 

Відповідь:

7L732v1

Дано: коло з центром в точці О. AM i АК - дотичні (А поза колом).
М і К - точки дотику. ОА - перетинає коло в точці N. N - середина ОА.

Знайти: ∟MAK.
Розв'язання:
Виконаємо додаткові побудови: ОМ i ОК - радіуси.
За властивістю дотичних до кола маємо:
ОМ ┴ МА; ОК ┴ АК та МА = АК.
Розглянемо ∆ОМА та ∆ОКА - прямокутні.
ОА - спільна сторона; ОМ = ОК - радіуси.
За ознакою piвностi прямокутних трикутників маємо: ∆ОМА = ∆ОКА,
звідси маємо: ∟MAO = ∟KAO.
За аксіомою вимірювання кутів маємо ∟MAK = ∟MAO + ∟KAO = 2∟MAO.
Розглянемо ∆ОМА - прямокутний.
∟OMA = 90°; ОМ = ON = R; N - середина ОА; якщо ON = NA i ON = R, тоді ОА = 2R.
За властивістю катета, який лежить навпроти кута 30°, маємо, якщо ОМ = R
та ОА = 2R, тоді ∟MAO = 30°. Звідси маємо ∟MAK = 30° • 2 = 60°.
Biдповідь: 60°.